Canonical information flow decomposition among neural structure subsets
نویسندگان
چکیده
Partial directed coherence (PDC) and directed coherence (DC) which describe complementary aspects of the directed information flow between pairs of univariate components that belong to a vector of simultaneously observed time series have recently been generalized as bPDC/bDC, respectively, to portray the relationship between subsets of component vectors (Takahashi, 2009; Faes and Nollo, 2013). This generalization is specially important for neuroscience applications as one often wishes to address the link between the set of time series from an observed ROI (region of interest) with respect to series from some other physiologically relevant ROI. bPDC/bDC are limited, however, in that several time series within a given subset may be irrelevant or may even interact opposingly with respect to one another leading to interpretation difficulties. To address this, we propose an alternative measure, termed cPDC/cDC, employing canonical decomposition to reveal the main frequency domain modes of interaction between the vector subsets. We also show bPDC/bDC and cPDC/cDC are related and possess mutual information rate interpretations. Numerical examples and a real data set illustrate the concepts. The present contribution provides what is seemingly the first canonical decomposition of information flow in the frequency domain.
منابع مشابه
Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph
MOTIVATION Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway anal...
متن کاملA network for recursive extraction of canonical coordinates
A network structure for canonical coordinate decomposition is presented. The network consists of two single-layer linear subnetworks that together extract the canonical coordinates of two data channels. The connection weights of the networks are trained by a stochastic gradient descent learning algorithm. Each subnetwork features a hierarchical set of lateral connections among its outputs. The ...
متن کاملm-Ary Hypervector Space: Convergent Sequences and Bundle Subsets.
In this paper, we have generalized the definition of vector space by considering the group as a canonical $m$-ary hypergroup, the field as a krasner $(m,n)$-hyperfield and considering the multiplication structure of a vector by a scalar as hyperstructure. Also we will be consider a normed $m$-ary hypervector space and introduce the concept of convergence of sequence on $m$-ary hypernormed space...
متن کاملMulti-Domain Feature Extraction for Small Event-Related potentials through Nonnegative Multi-Way Array Decomposition from Low Dense Array EEG
Non-negative Canonical Polyadic decomposition (NCPD) and non-negative Tucker decomposition (NTD) were compared for extracting the multi-domain feature of visual mismatch negativity (vMMN), a small event-related potential (ERP), for the cognitive research. Since signal-to-noise ratio in vMMN is low, NTD outperformed NCPD. Moreover, we proposed an approach to select the multi-domain feature of an...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014